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Abstract—Existing studies on disease diagnostic models focus either on diagnostic model learning for performance improvement or

on the visual explanation of a trained diagnostic model. We propose a novel learn-explain-reinforce (LEAR) framework that unifies

diagnostic model learning, visual explanation generation (explanation unit), and trained diagnostic model reinforcement (reinforcement

unit) guided by the visual explanation. For the visual explanation, we generate a counterfactual map that transforms an input sample to

be identified as an intended target label. For example, a counterfactual map can localize hypothetical abnormalities within a normal

brain image that may cause it to be diagnosed with Alzheimer’s disease (AD). We believe that the generated counterfactual maps

represent data-driven knowledge about a target task, i.e., AD diagnosis using structural MRI, which can be a vital source of information

to reinforce the generalization of the trained diagnostic model. To this end, we devise an attention-based feature refinement module

with the guidance of the counterfactual maps. The explanation and reinforcement units are reciprocal and can be operated iteratively.

Our proposed approach was validated via qualitative and quantitative analysis on the ADNI dataset. Its comprehensibility and fidelity

were demonstrated through ablation studies and comparisons with existing methods.

Index Terms—Visual explanation, counterfactual reasoning, representation reinforcement, explanation-guided attention, deep learning,

explainable AI (XAI), structural magnetic resonance imaging, Alzheimer’s disease

Ç

1 INTRODUCTION

ALZHEIMER’S disease (AD) is known as one of the most
prevalent neurodegenerative diseases, characterized by

progressive and irreversible memory loss and cognitive
function decline or impairment. AD causes the damage and
destruction of nerve cells in brain regions related to mem-
ory, language, and other cognitive functions, and it has con-
tributed to 60–80% of the world’s dementia cases [1]. Brain
atrophy associated with AD emerges as a continuous pro-
gression from cognitively normal (CN) to mild cognitive
impairment (MCI) and dementia in the symptomatic spec-
trum [2]. Currently available AD-related medicines have

marginal effects in alleviating amnesic symptoms or slow-
ing their progression. Thus, early detection and timely inter-
vention of AD at its preclinical or prodromal stages are of
paramount importance in the prevention of its progression
and in diminishing its incidence.

Of various brain imaging tools, structural magnetic reso-
nance imaging (sMRI) has been most intensively studied for
AD diagnosis as it provides imaging biomarkers of neuro-
nal loss in the anatomical structures of a brain [3]. Specifi-
cally, sMRI scans are helpful in detecting and measuring
morphological changes in the brain, such as enlarged ven-
tricles and regional atrophies, and anatomical variations
across subjects. In the last few decades, researchers have
devoted their efforts to devising machine-learning techni-
ques that can analyze and identify the potential risk of a
subject having AD or MCI at an early stage [4], [5], [6], [7],
[8]. More recently, with the unprecedented advances in
deep learning, there have been many successful studies in
sMRI-based AD diagnosis that achieved clinically applica-
ble performance [9], [10], [11], [12], [13].

In the meantime, there has been a growing need for
explainability of a model’s output and/or interpretability of
a model’s internal workings [14], [15], [16]. The black-box
nature of deep learning models limits their real-world appli-
cation in the fields of medicine, security, and finance, espe-
cially where fairness, accountability, and transparency are
essential. From the end-user’s (e.g., clinicians and patients)
perspective, it is crucial to be able to interpret and explain a
deep-learning model’s output at the level of human knowl-
edge and understanding. However, building a predictive
model for high performance that is also equipped with
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interpretability or explainability is still an unsolved problem
because of their trade-off, i.e., interpretable/explainable
models tend to have lower performance than black-boxmod-
els [17], [18], [19], especially in the field of medical vision.

Reducing this trade-off between performance and interpret-
ability/explainability has been a long-standing goal in the field
of explainable AI (XAI). In the early era of XAI [20], researchers
have proposed various methods for discovering or identifying
the regions that have the most influence on deriving the out-
come of a classifier [21], [22], [23], [24], [25], [26]. The main
objective of those XAI methods is to answer the question, “For
an input X, which part influenced the classifier’s decision to label it
Y ?” However, recent XAI methods try to answer the question
that can offer a more fundamental explanation: “If an input X
wasX�, would the outcome have been Z rather than Y ?” [27], [28],
[29] in the sense of causality. This sort of explanation is defined
at the root of counterfactual reasoning [30]. Counterfactual rea-
soning can provide an explanation at the level of human
knowledge as it explains a model’s decision in hypothetical
scenarios.

Inspired by this philosophical concept of counterfactual
reasoning, in this work, we propose a novel method for a
higher-level visual explanation of a deep predictive model
designed and trained for AD diagnosis using sMRI. Specifi-
cally, our method generates a ‘counterfactual map’ condi-
tioned on a target label (i.e., hypothetical scenarios). This
map is added to the input image to transform it to be diag-
nosed as a target label. For example, when a counterfactual
map is added to the input MRI of an AD subject, it causes
the input MRI to be transformed such that it will be diag-
nosed as CN [31], [32]. Most of the existing works on pro-
ducing a counterfactual explanation exploit generative
models with generative adversarial network (GAN) and its
variants [33], [34], [35]. To the best of our knowledge, how-
ever, they are limited to producing a single-way [28], [33],
[36] or dual-way [27], [29] explanation. In other words, they
only consider one or two hypothetical scenarios for counter-
factual reasoning (e.g., single-way counterfactual map can
only transform a CN subject to an AD patient, and vice
versa for dual-way maps). Thus, when there are more than
two classes of interest for diagnosis, e.g., CN versusMCI ver-
sus AD, a set of such explainable models must be built sepa-
rately and independently for different pairs of clinical
labels, e.g., CN versus MCI, MCI versus AD, and CN versus
AD. However, with those separately and independently
trained explanation models, it is likely to be incompatible
and inconsistent in explanation, especially, in terms of the
AD spectrum, raising accountability or interpretability
issues. Consequently, it is necessary to build a single model
for multi-way counterfactual map generation. Notably, a
multi-way counterfactual map for an AD diagnostic model
can provide a natural proxy for the stratification of diseases
by producing hypothetical scenarios for intermediate stages
(e.g., CN!MCI!AD) of a disease. To this end, we propose
a novel multi-way counterfactual reasoning method such
that we can produce counterfactual maps for transforming
an input to be any of the clinical labels under consideration
(i.e., CN, MCI, and AD).

Meanwhile, we believe it is desirable to utilize the counter-
factual maps as privileged information, derived from an expla-
nation model in combination with an AD diagnostic model

during a training stage, to further enhance a classifier’s gen-
eralizability, thus improving performance. In particular,
thanks to the favorable counterfactual map’s localization
properties, we propose to exploit such information to guide a
diagnosticmodel’s focus on learning representations anddis-
covering disease-related discriminative regions, which can
be regarded as anatomical landmarks for diagnosis.

To this end, we propose a novel learn-explain-reinforce
(LEAR)y framework. Our LEAR framework can produce
high-quality counterfactual maps with state-of-the-art diag-
nostic performances through explanation-guided model
reinforcement. Fig. 1 illustrates the schematic diagram of
our proposed framework for counterfactual map generation
to explain a diagnostic model’s output (Explanation Unit)
and its use to reinforce the generalizability of the diagnostic
model via our newly devised pluggable reinforcement unit.

The main contributions of our work can be summarized
as follows:

� We propose a novel learn-explain-reinforce frame-
work that integrates the following tasks: (1) training
a diagnostic model, (2) explaining a diagnostic mod-
el’s output, and (3) reinforcing the diagnostic model
based on the explanation systematically. To the best
of our knowledge, this work is the first that exploits
an explanation output to improve the generalization
of a diagnostic model reciprocally.

� In regard to explanation, we propose a GAN-based
method to produce multi-way counterfactual maps
that can provide a more precise explanation,
accounting for severity and/or progression of AD.

� Our work qualitatively and quantitatively surpasses
state-of-the-art works in visual explanation and clas-
sification performance simultaneously.

The remainder of this article is organized as follows. In
Section 2, we briefly review related work on attribution-

Fig. 1. Schematic of our proposed learn-explain-reinforce (LEAR)y

framework. The explanation unit is a variation of conditional GAN that can
synthesize a counterfactual map conditioned on an arbitrary target label.
The reinforcement unit provides adequate guidance from the produced
counterfactual map for reinforcing the performance of diagnostic modelR.
We also introduce a simple iterative optimization scheme that enables
simultaneous improvement of the explanation and diagnostic performance.

y The term reinforce/reinforcement used in this article refers to rein-
forcing the visual explanation and diagnostic models by means of atten-
tion-based guidance. Thus, it should not be confused with reinforcement
learning in machine learning, which is a learning paradigm for intelligent
agents.

4844 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on February 26,2024 at 19:37:23 UTC from IEEE Xplore.  Restrictions apply. 



based approaches and counterfactual explanations. Next,
we introduce the automated AD diagnosis using attention
with guidance. The proposed method is described in detail
in Section 3. In Section 4, we describe the studied datasets
(i.e., ADNI-1 and ADNI-2) with the data preprocessing
pipeline as well as the experimental settings, competing
methods, and qualitative and quantitative experimental
results. We conclude this article and briefly discuss our
stance on model explanation in Section 5. Our code is avail-
able at: https://github.com/ku-milab/LEAR.

2 RELATED WORK

In this section, we describe various works proposed for
explainable AI (XAI) and attentionwith guidance approaches
for the improvement of ADdiagnosis using sMRI.

2.1 Attribution-Based Explanations

Attribution-based explanation refers to discovering or
identifying the regions that have the most influence on
deriving the outcome of a model. The methodological
approaches for attribution-based explanation can be sub-
divided into gradient-based methods and reference-
based methods. A gradient-based method highlights the
activation nodes that contributed the most to a model’s
output. For example, class activation map (CAM) [41],
and Grad-CAM [21] highlight the activation patterns of
weights in a specified layer. Similarly, DeepTaylor [24],
DeepLift [25], and layer-wise relevance propagation
(LRP) [23] pinpoint the attributes that contributed to a
model’s output score by tracing back via gradient-based
computations. These methods usually suffer from van-
ishing gradients especially when using ReLU activation.
Integrated Gradients [22] resolves this issue through sen-
sitivity analysis. Note that gradient-based methods fun-
damentally explain the output decision based on the
discriminative abstract features at the upper layers close
to the classifier. Due to the lack of localization informa-
tion in the coarse high-level feature maps, attribution-
based methods [21], [22], [23], [24], [41] mostly suffer
from providing blurry saliency maps, making them
unable to explain localized subtle changes [43]. Further-
more, in general, the highlighted or pinpointed attributes
need a secondary analysis or interpretation for human-
level understanding. For example, when voxels in the
subcortical regions of an input MRI are localized as the
informative attributes for MCI/AD identification, it is
necessary to further analyze whether those regions
involve atrophic changes or morphological variations,
which can only be done by experts.

Reference-based explanation methods [26], [33], [44], [45]
focus on changes in model output with regards to perturba-
tion in input samples. Various perturbation methods that
employ strategies such as masking [46], heuristics [33] (e.g.,
blurring and random noise), using the region of the distrac-
tor image as reference for perturbation [27], and synthesized
perturbation [26], [44], [45], have been introduced in the lit-
erature. One general drawback of these aforementioned
attribution-based explanation methods is that they tend to
produce similar saliency maps across wrong class labels
due to an “attribution vanishing” problem, a phenomenon

where the layer-wise explanatory relevance values decrease
as the layer levels descend [47].

2.2 Counterfactual Visual Explanations

Recently, more researchers have focused on counterfactual
reasoning as a form of visual explanation. Counterfactual
explanation refers to analyzing amodel’s output with regard
to hypothetical scenarios. For example, in AD diagnosis, a
counterfactual explanation could highlight brain regions
that may (hypothetically) cause a normal subject to be diag-
nosed with a disease when transforming an input image
accordingly. VAGAN [31] uses a variant of GAN to synthe-
size a counterfactual map that transforms an input sample to
be classified as another label. However, VAGAN has consid-
erable limitations in its framework. First, formap generation,
the true label of an input sample must be known, which is
not practically possible in real-world scenarios. Second,
VAGAN performs a single-way synthesis only. That is, it
generates a counterfactual map that transforms an input
originally classified as ‘A’ to be classified as ‘B’, but not the
reverse. Circumventing the major limitations of VAGAN
described above, Bass et al. proposed ICAM [32] for produc-
ing dual-way counterfactual explanations. However, it can-
not be used in tasks with multiple classes of interest and is
restricted to being a dual-way explanation.

A possible circumvention to a multi-way explanation
would be to combine multiple single-/dual-way models to
perform a multi-way explanation. However, one crucial
downside of a combination of multiple dual-way imple-
mentations compared to a single multi-way implementation
is that their outputs do not preserve the associations or rela-
tions among the target labels, e.g., clinical stages in the AD
spectrum. Note that multiple dual-way implementations
generate explainable maps separately and independently
without considering the relations among the target classes.
Thus, there is no guarantee that the counterfactual maps
generated from the multiple independently trained dual-
way implementations will preserve the class relations, i.e.,
CN-MCI-AD in our case. Another limitation of a combina-
tion of dual-way models is that it is not fundamentally suit-
able for real-world scenarios because the true label of an
input instance must be known prior to counterfactual map
generation. Specifically, given a set of CN versus MCI, MCI
versus AD, and CN versus AD dual-way models, it is
required to know the true label of an input MRI to select the
appropriate dual-way model for counterfactual map gener-
ation. Note that given an input MRI of a cognitively normal
subject, generating a counterfactual map of MCI or AD with
the MCI versus AD model has no meaning.

It is also noteworthy that VAGAN and ICAM focus on
generating images to be classified as another specified target
class, rather than elucidating the reasoning or explaining a
classifier’s decision. In this work, we propose a novel coun-
terfactual explanation method that can be differentiated
from the aforementioned methods as follows: (1) Our pro-
posed method is fundamentally designed to generate coun-
terfactual maps to explain a predictive model’s output in a
post-hoc manner. (2) Our proposed method is applicable to
a predictive model trained for multi-class classification
tasks, e.g., CN versus MCI versus AD and handwritten digit
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recognition (MNIST), in generating multi-way counterfac-
tual maps in a single framework. (3) Our proposed LEAR
framework is designed to work with most connectionist
models, such as ResNet18 [48], VoxCNN [10], and Sono-
Net16 [49], for generating counterfactual maps.

2.3 Attention With Guidance

Inspired by the recent successes of deep learning techniques
using anatomical landmarks in sMRI, several studies have
utilized deep neural networks to guide anatomically and
neurologically meaningful regions for brain disease diagno-
sis [40], [42], [50]. Lian et al.[50] proposed a hierarchical
fully convolutional network (H-FCN) using anatomical
landmarks, which were used as prior knowledge to rule out
non-disease-related regions via an attention mechanism, so
as to learn discriminative representations more efficiently.
The attention-guided HybNet [40] was also proposed to
extract discriminative patches and regions from a whole-
brain MRI by exploiting CAM extracted from pre-trained
models, upon which multi-scale features were jointly
trained and fused to construct a hierarchical classification
model for AD diagnosis. In the same line of strategies, Li
et al. [42] proposed an iterative guidance method using
CAM for joint pathological region localization and identifi-
cation for enhancing the diagnostic performance.

While the AD-induced anatomical changes in a brain are
subtle, especially in the preclinical or prodromal stages, and
are heterogeneous across patients, the aforementioned
CAM-based methods can take advantage of only coarse-
grained guidance because of the blurry nature of CAM. By
contrast, the counterfactual maps obtained from our visual
explanation method can provide fine-grained guidance as
they represent the minimal source of information to change
the clinical label of an input MRI into other ones. By regard-
ing the counterfactual maps as privileged information, we
devise a novel explanation-guided attention (XGA) module
that helps reinforce the generalizability of the predictive
network, thus improving its diagnostic performance.

In an effort to categorize the related works of our arti-
cle, we have categorized some state-of-the-art works into

visual explanation, use of attention mechanism, explana-
tion-guided methods, and the ability to reinforce visual
explanation, as presented in Table 1. Our work is, to the
best of our knowledge, the first that exploits an explana-
tion output to improve the generalization of a diagnostic
model reciprocally.

3 METHOD

In this section, we describe our LEAR framework for visual
explanation and reinforcing a diagnostic model. As schema-
tized in Fig. 1, there are two principal units in the frame-
work. The first is an explanation unit (EU) that learns a
counterfactual map generator C, aimed to visually explain
the output of a pre-trained diagnostic model for AD/MCI/
CN diagnosis. The other one is a reinforcement unit (RU)
that, guided by the counterfactual maps generated in EU,
updates the learnable parameters of the diagnostic model to
improve its generalizability and performance. Beyond these
two principal units, our framework also involves a step of
pre-training a diagnostic model in a conventional manner,
i.e., supervised learning using training samples.

Throughout this article, we denote network models
including a diagnostic model, a counterfactual map genera-
tion model, and their subnetworks using calligraphic font,
while vectors and matrices are denoted by boldface lower
and uppercase letters, respectively. The sets are denoted
using a typeface style.

Without loss of generality, we assume that a diagnostic
model R is a CNN-based architecture (e.g., ResNet18 [48],
VoxCNN [10], and SonoNet16 [49]) and is trained using a
whole-brain 3D MRI as input.

3.1 Counterfactual Visual Explanation Model

Given a pre-trained diagnostic model R, we describe our
novel visual explanation model C for the output of the diag-
nostic model. Formally, the goal of our visual explanation
model C is to infer a counterfactual reasoning map over the
output label from a diagnostic model. To this end, we
develop a counterfactual map generation method in a GAN
framework.

TABLE 1
Recent Studies Categorized Into Visual Explanation, Use of Attention Mechanism, Explanation-Guided Methods, and Ability to

Reinforce Visual Explanation

Methods Visual
Explanation

Attention Guidance Reinforce Description

Liu et al. [37] LRP [23] Improving the diagnostic performance through instance
normalization and model capacity increase

Korolev et al.
[10]

- Unique feature extraction by applying the dropout operation
before the fully connected layer

Jin et al. [38] - ✓ Discriminative feature extraction using the attention-based
residual network

Zhang et al.
[39]

Grad-CAM [21] ✓ Global and local representation captured using self-attention
with the residual connection

Lian et al.
[40]

CAM [41] ✓ ✓ Attention-guided anatomical landmarks to capture multi-
level discriminative patches and regions

Li et al. [42] CAM [41] ✓ ✓ Iterative attention-focusing strategy for joint pathological
region localization and identification

LEAR
(Ours)

Counterfactual
Reasoning [30]

✓ ✓ ✓ Reinforcement of the diagnostic performance and explainability
via the self-iterative training strategywith guidance
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The overall structure for learning our visual explanation
model is illustrated in Fig. 2. It has three major modules of a
counterfactual map generator (CMG), a reasoning evaluator
(RE), and a discriminator (DC). The role of these three mod-
ules can be summarized as follows:

� CMG: Given an input MRI sample X and a target
label t, where t ¼ ½0; 1�jYj is a class probability distri-
bution vector and jYj is the size of the class space Y,
CMG generates a map MX;t which, when added to
the input X, i.e., ~X ¼ XþMX;t, causes the trans-
formed image ~X to be categorized into the target
label twith high confidence.

� RE: This basically exploits the diagnostic model R
itself. It directly evaluates the effect of the generated
counterfactual map MX;t in producing the targeted
label t, possibly diagnosed differently from the out-
put label of the original input X.

� DC: This helps the CMG to generate an anatomically
and morphologically meaningful map, making the
transformed image ~X realistic.

As RE and DC are, respectively, the network of a diag-
nostic model and a typical component in GAN, we describe
only the CMG in detail.

3.1.1 Counterfactual Map Generator (CMG)

The CMG is a variant of Conditional GAN [51] that can syn-
thesize a counterfactual map MX;t conditioned on a target
label t. It consists of an encoder Eu and a generator Gf, where
the subscripts u and f denote the tunable parameters of the
respective networks. The network design of the encoder Eu
and the generator Gf is a variant of U-Net [52] with a tiled tar-
get label concatenated to the skip connections, as presented in
Fig. 3. Here, we should emphasize that the encoder Eu is taken
from the set of layers and the corresponding parameters to
extract features in a pre-trained diagnostic model R with
weights u fixed. Therefore, the encoder Eu is already capable of
extracting disease-related features from an input X, thusmak-
ing ourCMG trainable relatively easily and robustly by tuning
the parameters of layers other than in the encoder Eu only.

Let fFEuðXÞl gLl¼1 denote the output feature maps of the L
convolution layers in the encoder EuðXÞ. A given target label

t is concatenated with the feature maps after tiling so
that their shapes match the respective feature maps
concatenated, i.e., tile t with the size of wl � hl � dl � c,
where wl, hl, and dl denote, respectively, the width, height,
and depth of a feature map from the l-th convolution block,
and c denotes the number of channels. In order to extract
better representations of the target label related information,
we apply a convolution operation (Conv3D) with a learn-
able 3� 3� 3 kernel, a stride of 1 in each dimension, and
zero padding, followed by a nonlinear LReLU activation
function as follows (see Fig. 3):

tðFEuðXÞl ; tÞ ¼ LReLU Conv3D F
EuðXÞ
l � TileðtÞ

� �� �
(1)

where� denotes an operator of channel-wise concatenation.
Then, the target label information included feature maps

F
E0
u
ðXÞ

l ¼ tðFEuðXÞl ; tÞ are transmitted to the generator Gf via

skip connections. The generator Gf is then able to responsi-

bly synthesize a map MX;t from the target label informed

feature maps as follows:

MX;t ¼ Gf T ðX; tÞð Þ (2)

Fig. 2. Schematic overview of the counterfactual map generation to induce the cause of dementia diagnosed from the backbone network. It has major
components: counterfactual map generator and reasoning evaluator. The counterfactual map generator synthesizes a counterfactual map MX;t con-
ditioned on arbitrary target label t or posterior probability t0 obtained from the diagnostic model RðXÞ, while the reasoning evaluator works towards
enforcing target label attributes to the synthesized map. Note that “�” is the operator for channel-wise concatenation and “þ” is the operator for ele-
ment-wise addition. X and �X are two random instances drawn from the same data distribution, i.e., X; �X � PX.

Fig. 3. Detailed view of the counterfactual map generator (CMG). A tar-
get label t is tiled and channel-wise concatenated to the skip connection.
This enables the CMG to condition the counterfactual maps to be condi-
tioned on an arbitrary target condition.
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where T ðX; tÞ ¼ fFE
0
u
ðXÞ

1 ; . . . ; F
E0
u
ðXÞ

L g. Finally, we produce a

transformed MRI ~X by combining the synthesized map MX;t

with an input MRI X via addition, i.e., ~X ¼ XþMX;t, which

is supposed to be classified as the target label t by the fol-

lowing RE module, i.e., the diagnostic modelR.
Note that in a setting where the target label t (e.g., CN) is

different from the ground-truth label y (e.g., AD), we may
hypothesize that the synthesized mapMX;t visually explains
why the input X was classified to tX (e.g., AD), instead of t
(e.g., CN) because MX;t highlights the hypothetical regions
that contributed to transforming an AD-like MRI X to a CN-
like MRI ~X.

3.1.2 Counterfactual Visual Explanation Model Training

In this subsection, we define a set of loss functions to train
our counterfactual visual explanation model.

Cycle Consistency. In order to encourage the synthesized
map MX;t, which is conditioned on an input X and a target
label t, to be anatomically and morphologically meaningful,
we exploit a cycle consistency loss [53] with ‘1-norm as:

Lcyc ¼ EX�PX;t�Uð0;jyjÞ X0 � Xk k1
� �

(3)

where PX denotes a distribution of MRI samples, jYj is the
number of classes, Uð	Þ is the one-hot encoded form of a dis-
crete uniform distribution, ~X ¼ XþMX;t and X0 ¼ ~Xþ
M~X;RðXÞ. As we propose a way of generating multi-way coun-
terfactual maps, this loss is imperative to synthesize different
counterfactual maps for different conditions without suffering
from amode collapse problem [54].

Note that, in the following equations, we omit arbitrary
target labels t � Uð0; jYjÞ from the expectation terms for
simplicity.

Adversarial Learning. Inspired by Least Square GAN [55],
we adopt the least squares loss function that penalizes sam-
ples distant from the discriminator’s decision boundary.
Using the cycle consistency loss in Eq. (3), the least squares
loss needs to be applied to arbitrary real MRI samples �X,
and transformed (i.e., fake) samples ~X and X0:

LDcadv ¼ E�X�PX ðDcð�XÞ � 1Þ2
h i

þ 1

2
EX�PX Dcð~XÞ2 þDcðX0Þ2

h i� �
(4)

LGfadv ¼
1

2
EX�PX ðDcð~XÞ � 1Þ2 þ ðDcðX0Þ � 1Þ2

h i� �
(5)

This objective function is suitable for our CMG training
because the generated counterfactual maps should neither
destroy the input appearance nor ignore the target attribu-
tion. However, it needs additional loss terms to make a gen-
erated counterfactual map smooth, sparse, and meet the
target condition.

Total Variation. For a more natural synthesis of the coun-
terfactual map generated from CMG and its harmonization
with an input sample, we exploit the total variation loss [56]
as a regularizer as follows:

Ltv ¼
X
i;j;k

~Xiþ1;j;k � ~Xi;j;k

�� ��þ ~Xi;jþ1;k � ~Xi;j;k

�� ��

þ ~Xi;j;kþ1 � ~Xi;j;k

�� �� (6)

where ~X ¼ XþMX;t, and i, j, and k are indices of each axis
in the 3D coordinate of a volumetric image, respectively.

Sparsity in a Counterfactual Map. From the interpretability
and identity preservation standpoints, it is crucial to regu-
larize the dense counterfactual map to highlight only the
essential regions necessary for counterfactual reasoning. To
this end, we also impose an elastic regularization on the
synthesized counterfactual map as follows:

Lmap ¼ EX�PX �1 MX;t

�� ��
1
þ�2 MX;t

�� ��
2

h i
(7)

where �1 and �2 are the weighting hyperparameters.
Correctness of Counterfactual Reasoning. To ensure that the

transformed image ~X ¼ XþMX;t is correctly conditioned on
the target label t, we employ a classification loss function as
follows:

Lcls ¼ EX�PX CE t; ~yÞð Þ½ � (8)

where CE denotes a cross-entropy function, and ~y ¼ Rð~XÞ is
a softmax activated class probability distribution vector.

Conceptually, the role of the diagnostic model R is simi-
lar to that of a DC Dc, but their objective is very different.
While a DC Dc learns to distinguish between real and fake
samples, the diagnostic model R is already trained to clas-
sify the input samples correctly. Thus, the diagnostic model
R provides deterministic guidance for the generator to pro-
duce a target-directed counterfactual map, while the DC Dc

plays a min-max game with a generator Gf in an effort to
produce more realistic samples.

3.1.3 Total Loss Function

We define the total loss function for counterfactual map
generation as follows:

LCMG ¼ �3L
Gf
adv þ �4L

Dc
adv þ �5Lcyc þ �6Lcls þ �7Ltv þ Lmap

(9)

where �� values are the hyperparameters of the model (�1;2

in Eq. (7)). We empirically tuned � such that the magnitude
of gradients of each loss term is roughly balanced (see Sup-
plementary S1.3, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2022.3197845). An ablation study of these
loss functions is provided in Section 4.1.2. Overall, each of
the loss terms improves the quality of generated counterfac-
tual maps.

It should be noted that during training, we share and fix
the weights of the encoder Eu of the CMG with the RE mod-
ule’s feature extractor Eu to ensure that the attribution is
consistent throughout the generative process.

3.2 Reinforcement Representation Learning

In this article, we hypothesize that the set of counterfactual
maps synthesized by our CMG along with a diagnostic
model can be a vital source of knowledge of anatomical or
morphological changes relevant to AD, inferred in a data-
driven manner. Such data-driven knowledge is comparable
to the conventional neuroscientific knowledge mostly
acquired from a group statistical analysis in a univariate
manner [3]. Note that the diagnostic model is trained with
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the aim of classifying samples having different clinical
labels, e.g., CN, MCI, and AD, by discovering generalizable
and discriminative patterns inherent in samples. Our pro-
posed CMG is designed and trained to detect such general-
izable and discriminative patterns in an input sample to
explain the diagnostic model’s output via counterfactual
reasoning.

3.2.1 Guidance Map Generation

Based on these considerations, we propose to exploit the
counterfactual maps as guidance to reinforce the diagnostic
model’s representations. Specifically, we generate the coun-
terfactual maps of an input sample with the target labels of
tCN and tAD, i.e., themost normal and themost AD-like brains
with regard to the input sample. For example, in a 3-class clas-
sification task of CN versusMCI versusAD, tCN ¼ ½1; 0; 0� is the
class probability distribution vector of CN and tAD ¼ ½0; 0; 1�
is the class probability distribution vector of AD. Assuming
that these two counterfactual maps jointly represent the local-
ized AD-sensitive regions over the whole brain, we build a
guidancemapMguide by combining them as follows:

Mguide ¼ MinMax MX;tCN

���
���þ MX;tAD

���
���

� �
(10)

where j 	 j is an absolute operation and MinMaxð	Þ denotes a
min-max normalization in a voxel-wise manner. Thus, the
absolute term in the guidance map Mguide allows the use of
attentive values in both the extreme cases of most normal
brain and most AD-like brain (because negative values of
MX;tCN

highlight the most normal regions of the brain com-

pared to AD-affected brains, while positive values ofMX;tAD
highlight the most AD-like regions of the brain). This

guidance map is then used to reinforce the representational

power of the layers’ outputs in the diagnostic model by mod-
ulating them via the attention mechanism described below.

Note thatwe do not includeMX;tMCI
in Eq. (10) because of its

redundancy in creating a guidancemap asMCI is an interme-

diate stage between CNandAD in the AD spectrum.

3.2.2 Explanation-Guided Attention

In order to exploit the explanation-induced knowledge of
the anatomical and morphological changes for AD diagno-
sis, we devise an explanation-guided attention (XGA) mod-
ule by regarding the counterfactual maps as data-driven
privileged information during training. Specifically, we inject
a self-attention module that adaptively modulates the layer
outputs in the diagnostic model (Fig. 4).

Let Ul be an output feature map of the l-th layer in the
diagnostic modelR, i.e.,Ul ¼ F

EuðXÞ
l , andAl its resulting atten-

tion map, whose computation is detailed below. Note, it is
expected that the attention map Al produces the higher atten-
tive values, where the higher explanation values are in the
guidancemapMguide, obtained by Eq. (10), for an input sample.
Thereby, the AD-sensitive regions, guided by the counterfac-
tual maps, are excited with the discriminative representations
while other regions are inhibited, thus reinforcing the feature
representations in the diagnosticmodel.

We base our computation to estimate the attention map
on the global-and-local (GALA) module [57], which consists

of global and local operators, as presented in Figs. 4a and
4c, respectively. Specifically, our XGA module adapts the
local and global attention operators of GALA and improves
them using a contextual attention operator. Using this sim-
ple modification to the GALA attention mechanism, our
XGA module achieved about 11% accuracy improvement in
3-class diagnosis experiments (refer to Supplementary S7,
available online).

Basically, the following operations can be applied to dif-
ferent layers equally. Hereafter, we omit the superscript l of
a layer index to reduce clutter. Our XGA modulates an
input feature map U with an attention map A of the same
dimension as U. That is, U;A 2 Rw�h�d�c, where w, h, d, and
c are the spatial width, height, depth, and number of feature
channels, respectively.

Global Attention: First, we account for the global attention in
the XGA module by exploiting the squeeze-and-excitation
technique [57], [58]. To obtain the global feature attention vec-
tor g 2 R1�1�1�C , we first obtain a channel descriptor d ¼
½dc�Cc¼1 by calculating the summary statistics of the c-th channel
via global average pooling, i.e., dc ¼ 1

WHD

PW
w¼1

PH
h¼1

PD
d¼1

Uwhdc. As the channel descriptor d includes information
obtained from the full receptivefield, it canbe thought of as car-
rying the importance of the respective channel with respect to
the global information. This is followed by a two-layer neural
network that non-linearly transforms the channel descriptor to
explicitlymodel the inter-dependencies among the channels as
follows:

g ¼WexpandðReLUðWc-shrinkðdÞÞÞ: (11)

where Wc-shrink 2 R
C
r�C and Wexpand 2 RC�Cr are the shrink-

ing and expansion operations, respectively, and r is a ratio
hyperparameter.

Local Attention. Second, we consider a local saliency com-
ponent to compute the local feature attention S. Unlike the
global attention, the local feature attention map S focuses
on “where” a crucial part locates, complementing the global
attention. While retaining the spatial dimensions, we con-
duct two consecutive convolution operations along the
channel dimension with a non-linear transformation in-
between to enhance the complexity as follows:

S ¼Wcollapse � ðReLUðWd-shrink �UÞÞ (12)

where � denotes convolution, Wd-shrink 2 R1�1�1�C�cr and
Wcollapse 2 R1�1�1�cr�1 are learnable parameters. This local
attention is used to generate an inter-feature attention map
by allowing for the channel-wise relationship of features.

Contextual Attention. Along with the global and local
attention operators of GALA described above, our XGA
also involves a contextual attention operator. It is designed
to utilize the contextual information from a larger receptive
field. To this end, we first conduct a dilated convolution [59],
which has the effect of taking into account features of
enlarged field of view and reducing the map size, followed
by a non-linear transformation. We then up-scale its output
back to the input size of U as follows:

U0 ¼ UpðReLUðWreduction �d UÞÞ (13)
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where �d denotes dilated-convolution and Upð	Þ is an opera-
tor for trilinear up-scaling back to the original spatial
dimensions of U.

Finally, the global, local, and contextual module outputs
are integrated to produce the attention mask A 2 Rw�h�d�c

after tiling g and S to form G�, S� 2 Rw�h�d�c owing to their
differences in size, as follows:

A ¼ s G� 
 U0 þ S� 
 U0ð Þ (14)

where s denotes a sigmoid activation function, 
 denotes
element-wise multiplication, and þ denotes element-wise
addition. The attention mask A plays the role of excitation
and inhibition of the input feature map U with a skip con-
nection as follows:

Uout ¼ ReLUðUþ ðU 
 AÞÞ: (15)

3.2.3 XGA Learning

Inspired by Linsley et al. [57], we define the loss using the
cross-entropy function regularized by the attention-guid-
ance penalty VXGA to train the parameters Rv ¼ fWl

expand;
Wl

c-shrink;W
l
collapse;W

l
d-shrink;W

l
reductiong

L
l¼1 for XGA modules

injected next to the every convolution layer of the diagnostic
model as follows:

LXGA ¼ EX�PX ½CEðy;RXGAðXÞÞ� þ �8VXGA (16)

VXGA ¼
X
l2L

�Ml
guide

k �Ml
guidek2

�
�AlðXÞ
�AlðXÞ

�� ��
2

�����

�����
2

(17)

where VXGA is a scalar value for attention-guidance penalty,
RXGA denotes the diagnostic model R with XGA modules
injected, �AlðXÞ 2 Rw�h�d�1 is the compression of AlðXÞ 2

Rw�h�d�c with channel-wise ‘2-norm values, �Ml
guide is a tri-

linear-interpolated form of Ml
guide to be the same size of

�AlðXÞ, and �8 is a weighting hyperparameter. While training
the parameters of the XGA modules, we fix the other model
parameters of the diagnostic model. With regards to the
attention-guidance penalty VXGA, as described above, we
expect that the attention map AlðXÞ of an input sample X
outputs higher values for excitation, where the higher
explanation values are in the guidance map Mguide, and
lower values for inhibition otherwise. It is noteworthy that
even though we regularize the model training by applying
the same guidance map for attention over layers, the atten-
tion maps of different layers still help find rich and diverse
features because of the residual operation in Eq. (15) and
the difference in resolution over layers. Thus, the XGAmod-
ule helps emphasize the features in the attended regions
while still considering features in non-attended regions for
better layer-wise representations.

3.3 Iterative Explanation-Reinforcement Learning

Finally, we introduce an iterative explanation-reinforcement
learning scheme that enhances the quality of visual explana-
tion as well as the performance of the diagnostic model as
follows:

Phase 1: CMG training

min
Gf;Dc

LCMG; (18)

Phase 2: XGA training

min
Rv

LXGA: (19)

Fig. 4. Schematic overview of the explanation-guided attention (XGA) module with a guidance map. A guidance map is a supervision for the XGA
module that assists in focusing on regions of pathological and morphological changes caused by dementia on the whole-brain. XGA module learns
and integrates locally subtle changes and globally discriminative structural changes that can optionally be supervised by the guidance map. Note
that “
” is the operator for element-wise multiplication and “þ” is the operator for element-wise addition.
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In this iterative training scheme, Phase 1 and Phase 2 are
repeated sequentially. During the first iteration of the opti-
mization, we use the original definition of counterfactual
reasoning map MX;t, i.e., Eq. (2), as XGA has not reinforced
the diagnostic model yet. For second and later iterations, we
redefine the counterfactual map as follows:

MX;t :¼ Gf T 0ðX; tÞð Þ (20)

where T 0ðX; tÞ ¼ ftðFEu;vðXÞ1 ; tÞ; . . . ; tðFEu;vðXÞL ; tÞg, and fFEu;vðXÞl gLl¼1
denote the output feature maps of the L convolution layers in

the encoder Eu;vðXÞ from the XGA-injected diagnostic model

RXGA. Note that parameters of the pre-trained diagnostic

model, i.e., u, are fixed during all phases and all iterations.

4 EXPERIMENTAL SETTINGS AND RESULTS

In this section, we (1) analyze and validate the visual expla-
nation results of our counterfactual reasoning map; (2)
show the effectiveness of our LEAR framework in reinforc-
ing the diagnostic models; and (3) apply our LEAR frame-
work to baseline and state-of-the-art diagnostic models to
demonstrate its portability.

4.1 Counterfactual Reasoning

4.1.1 Toy Example: MNIST Classifier

In order to help the readers’ understanding of a visual
explanation method using counterfactual reasoning maps,
we present the visual explanation of an MNIST classifier,
owing to its intuitiveness.

Dataset and Implementation
MNIST [60] is a gray-scale handwritten digit image

dataset that, we believe, is suitable for the proof-of-concept
of various visual explanation methods. For the preparation
of the dataset, we utilized the data split provided by the
dataset publisher [60] and applied min-max normalization.
For the classifier model, we re-implemented and pre-
trained the model proposed by Kim et al. [61] with minor
modifications (e.g., kernel and stride size) to accommodate
the smaller image size of the MNIST dataset. More details
on the implementation are in Supplementary S1.1, avail-
able online.

Results and Analysis
Fig. 5 shows examples of the generated counterfactual

(CF) maps and the resulting synthesized images towards

five targeted classes (i.e., 0, 2, 4, 6, 8) from six different input
images (i.e., 1, 3, 5, 7, 9). Note that our CMG successfully pro-
duced counterfactual visual explanations, indicating which
pixels should be deleted (blue) or added (yellow) to be the
different target classes inmultiple hypothetical scenarios.

We emphasize the importance of visual explanation in
hypothetical scenarios as it can provide users with an intuitive
understanding of “what if X was X�?” In this sense, a CF
map should transform an input sample X to be dependent
only on the targeted hypothetical scenario and independent
to any other artifacts. Our experiment on the MNIST dataset
demonstrates this ability to isolate attribution to only the
targeted label because the transformed image maintains the
style of the input image while successfully being trans-
formed to a target digit. For example, for transforming an
image of the digit “3” to a target digit “8”, we can observe
that the contours of the original “3” image are maintained
while new contours are added to form a digit “8”. Likewise,
for transforming an image of the digit “9” to a target digit
“6”, we can observe that the upper and bottom arcs were
removed to form a digit “6” with the rest of the arcs main-
tained. This ability to isolate targeted conditions allows our
CMG module to be reliably applied to a medical task in the
next subsection.

4.1.2 Alzheimer’s Disease Classifier

Dataset and Implementation
The ADNI dataset, collated by the Alzheimer’s Disease

Neuroimaging Initiative [62], is used for the following
experiments. The ADNI dataset is highly challenging as it is
practice-oriented in real-world medical applications and its
images feature subtle and diverse morphological changes. It
consists of 3D structural magnetic resonance imaging
(sMRI) of various subject groups ranging from cognitive
normal (CN) to mild cognitive impairment (MCI) to
Alzheimer’s disease (AD). We further split MCI subjects
into two sub-groups of progressive MCI (pMCI) for MCI
subjects who have converted to AD within 36 months of
screening and stable MCI (sMCI) for those who remained in
the MCI group within 36 months of screening. Specifically,
we have utilized 433 CN subjects, 497 sMCI subjects, 251
pMCI subjects, and 359 AD subjects in ADNI-1 and ADNI-2
studies. Some subjects had multiple MRIs acquired during
the span of their life, but we have only selected their base-
line MRIs. Thus, 1,540 images are used in our experiments.
For three-class experiments, sMCI and pMCI subjects were
considered as MCI subjects. Note that, in our experiments,
prodromal stages from CN to AD are sMCI and pMCI, with
the latter generally considered more severe.

We used five-fold cross-validation setting for all experi-
ments and used the same indices for all the comparison
methods. We made sure there was no data leakage while
training the backbone diagnostic models, CMG optimiza-
tion, XGA optimization, and iterative optimization.

ResNet18 [48] baseline and various state-of-the-art diag-
nostic models were re-implemented for the encoder Eu to
demonstrate the generalizability of our LEAR framework.
Note that, unless specified otherwise, we utilize the three-
class ResNet18 model as the backbone diagnostic model for
the experiments in this section. The decoder Gf in the CMG

Fig. 5. Examples of counterfactual maps for the MNIST dataset. The
resulting synthesized image is an addition between an input and its corre-
sponding counterfactual map (blue and yellow denote, respectively, sub-
traction and addition of the respective pixel values, i.e., deletion and
addition of areas to be a target-labeled digit) conditioned on a target label.
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has the same network design as the encoder Eu with pooling
layers replaced by up-sampling layers. We have also utilized
the structure of encoder Eu as the DC module Dc identically
in all experiments. More details on the implementation,
ADNI dataset, and sMRI preprocessing [63], [64] are pro-
vided in Supplementary S1.2 and S2.1, available online.

Results and Analysis
In order for qualitative and quantitative evaluation with

regard to the visual explanation, we used the longitudinal
samples of 12 subjects in ADNI-1/-2, from which the
ground-truth maps were created to indicate morphological
changes in sMRI according to changes in clinical diagnosis.
Details about the longitudinal samples and creating
ground-truth maps are given in Supplementary S2.2, avail-
able online. It should be noted that none of these images
shown there were used in any of our model training
procedures.

(AD! CN Counterfactual Maps). For a visual explanation
of a trained three-class diagnostic model, we applied our
CMG and other comparative methods in the literature.
Fig. 6 illustrates their respective results to explain why the
input image was diagnosed as AD, instead of CN. Notably,
our proposed CMG showed the best matching result to the
ground-truth map by detecting and highlighting the ventri-
cle enlargement and cortical atrophies. These visual explan-
ations are consistent with the existing clinical neuroscience
studies [65], [66], [67].

The CF map generated by LRP-Z [23] and DeepLIFT [25]
does not clearly show the class discriminative regions. We
observe that these approaches focus only on the left hippo-
campus area while ignoring the right hippocampus area
(orange box). Unlike other gradient-based approaches,
Guided backpropagation [21], Integrated gradients [22],
and DeepTaylor [24] methods showed some traces of coun-
terfactual reasoning across the image, but unnecessary attri-
butions were observed at the edge or morphological
boundaries of the brain. Even though Grad-CAM [21] has
shown the class-discriminative visualization, this result
slightly captures the coarse regions.

GAN-based models (e.g., ours and VAGAN [31]) achieve
superior results in comparison to other visual explanation
methods. However, VAGAN is only successful in mimicking
the hypertrophy in the hippocampus regions while failing to
capture the increased cortical thickness (in fact, it decreased
the cortical thickness in blue-colored regions). In contrast, our
method captures almost every subtle regionwhere the cortical
thickness was increased while successfully capturing the
reducedventricular and the hypertrophy in the hippocampus.

Thus, our CMG module is able to visually explain class-dis-
criminative and fine-grained regions of the brain.

(CN$MCI$AD Counterfactual Maps). In addition to our
CMG’s ability to produce high-quality CF maps, it is also
capable of generating counterfactual explanation maps with
regard to diverse conditions in the AD spectrum, which, to
the best of our knowledge, cannot be done by the existing
comparable methods. We generated multi-way CF maps
with interpolation-based target conditions setting among
the three classes of CN, MCI, and AD and illustrated the
results in Fig. 7. In this figure, using longitudinal samples of
a subject (Subject ID 123_S_0106) who had experienced all
the clinical stages of CN, MCI, and AD over several years,
we produced CF maps under various target conditions. For
example, a target condition of ~t ¼ ½0:3; 0:7; 0�, where each
element accounts for the probability of belonging to the CN,
MCI, and AD group, respectively, was used to transform an
MCI image XMCI to a prodromal CN-like image using the
CF map MXMCI;

~t (first image in the top row of Fig. 7), and

Fig. 6. Example of counterfactual maps for the ADNI dataset (Subject ID 024_S_0985, Image ID on top left corner). Purple, green, and orange boxes
visualize ventricular, cortex, and hippocampus regions, respectively.

Fig. 7. Example of counterfactual map conditioned on interpolated target
labels (Subject ID 123_S_0106, Image ID on top left corner). The purple
boxes correspond to the ventricular region. Parentheses f	g and ½	� for
condition indicate the posterior probability and a target condition, respec-
tively. The +/- signs above the gray arrows denote, respectively, NCC(+)
and NCC(-). Refer to Supplementary Fig. S1, available online, for a
more detailed interpolation result of disease progression.
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the same target condition could be used to transform a CN
image XCN to a prodromal MCI-like image using the CF
mapMXCN;~t (second image in the top row).

Although linearly interpolating between stages of a dis-
ease is not a pathologically sound procedure for analyzing
the intermediate stages of a disease, our CMG produces
sub-optimalz CF maps in that biomarkers gradually increase
or decrease with regards to a given target condition (results
on interpolation in finer steps are in Supplementary Fig. S1,
available online). For example, the size of the ventricle (pur-
ple boxes) gradually reduces when interpolating from XMCI

to XCN (i.e., the “+” direction), and gradually enlarges when
interpolating in the opposite direction (i.e., the “-” direc-
tion). Additionally, we can see that the magnitude of the CF
maps MXCN;tMCI

(for transforming XCN to XMCI) and
MXMCI;tAD

approximately add up to the CF map MXCN;tAD
(i.e., MXCN;tAD

�MXCN;tMCI
þMXMCI;tAD

). This indicates
that our CMG is able to successfully capture the two
extreme tails of most normal brain and most AD-like brain,
which strengthens our motivation for using these maps as
the source of attention in the XGA module (see
Section 3.2.1).

(Quantitative Evaluation). To quantitatively assess the
quality of our generated CF maps, we calculated the nor-
malized cross-correlation (NCC) score between generated
CF maps and ground-truth maps by following [31]. The
NCC score measures the similarity between two samples in
a normalized setting where higher NCC scores denote
higher similarity. Thus, NCC can be helpful when two sam-
ples have a different magnitude of signals. Here, we denote
the ground-truth maps and CF maps for transforming CN
 MCI, MCI AD, CN AD as the “+” direction and CN
! MCI, MCI ! AD, CN ! AD as the “-” direction (see
Fig. 7), and calculate NCC(+) and NCC(-) for each.

The scores for LRP-Z [23] and DeepLIFT [25] are under-
standably low because they can only capture the least number
of class-discriminative features as seen in Fig. 6. Integrated
Gradients [21] can capture the class-discriminative features in
a group-wise manner, i.e., the values of their CF maps do not
differ significantly for different subjects, and so their NCC
score, which is a subject-wise correlation score, is very low.
Guided Backprop [21], DeepTaylor [24], and GradCAM [21]
can capture some class-discriminative features, but only in a

coarse-grained manner. We found that VAGAN [31] has cap-
tured somemeaningful regions for disease localization. How-
ever, NCC scores of our proposed CMG are higher than
VAGAN (Table 2) because our CF maps can localize bio-
markers throughout the brain, while the CFmaps of VAGAN
fail to capture the class-discriminative features in the cortical
regions. Unlike the competing methods, which are built on
top of binary classifiers, our LEAR framework can fully utilize
various backbone diagnostic models (e.g., ResNet18,
VoxCNN, and SonoNet16) for binary and multi-class classifi-
cation tasks. The full and comprehensive results are provided
in Supplementary S5.1, available online.

One interesting phenomenon across methods is the lower
NCC scores in the “-” direction, i.e., NCC(-). A simple
hypothesis we made was that more (difficult) processes are
required for subtracting, which happens mostly in the “-”
direction, than for adding certain regions of a brain. For
example, a baseline CN image tends to have more gray mat-
ter (i.e., gray-colored tissues) in certain biomarker regions
than its progressed AD image. These gray matter regions
also tend to contain more complex morphological features
than other (i.e., white matter and cerebrospinal fluid)
regions, which makes transforming to gray matter (i.e., a “-”
operation) more difficult given that morphological features
need to be drawn on top of those regions. With that said,
our LEAR framework could mitigate this gap between NCC
(+) and NCC(-) using the guidance map Mguide which
allows our framework to account for the both extreme cases
of most normal and most AD-like brains.

(Ablation Study). As our ablation study show in Table 3,
each loss term has different roles in generating counterfac-
tual maps. Most notably, ablating the classifier loss Lcls
results in a considerable drop in NCC scores, indicating
that it is one of the most crucial components of LEAR in con-
ditioning the counterfactual maps with regards to the target
label t. When missing the total variation loss Ltv in Eq. (6),
the sparsity loss Lmap in Eq. (7), and the GAN losses in
Eq. (4) and Eq. (5), it causes performance degradation over-
all but with different amounts. In particular, Ltv is responsi-
ble for smoothness of the generated map as it enforces each
pixel to correlate to its neighbouring pixels. The term of
Lmap is responsible for sharpness (or sparsity) of the image
as it uses an elastic regularizer. The GAN loss is vital to
ensure the overall quality of the counterfactual maps, as
seen by the considerable drop in NCC scores when ablating
out the GAN loss.

TABLE 2
Normalized Cross-Correlation (NCC) Scores With Comparison Methods on the ADNI Dataset

Scenario CN$MCI MCI$ AD CN$ AD

NCC(+) NCC(-) NCC(+) NCC(-) NCC(+) NCC(-)

LRP-Z [23] 0.005 0.005 0.006 0.004 0.008 0.005
Integrated Gradients [22] 0.006 0.007 0.007 0.007 0.006 0.005
DeepLIFT [25] 0.004 0.005 0.006 0.004 0.005 0.004
Guided Backprop [21] 0.199 0.158 0.212 0.163 0.239 0.204
DeepTaylor [24] 0.143 0.172 0.112 0.108 0.132 0.118
Grad-CAM [21] 0.201 0.188 0.215 0.227 0.227 0.214
VA-GAN [31] 0.283 0.186 0.285 0.257 0.317 0.298
Ours 0.364 0.289 0.299 0.297 0.366 0.312

We differentiated NCC scores for each generation direction of the counterfactual map. The +/- signs indicate different directions of the counterfactual map (see
Fig. 7).

z It is sub-optimal because the progression of disease is not a linear
process, but our target condition is.
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4.2 Diagnostic Model Reinforcement

In this section, we demonstrate the effectiveness of our LEAR
framework in reinforcing diagnostic models. To do so, we
have divided this section into three parts. First, we consider
the CF map transformation, i.e., Eq. (2), as a baseline method
for our work. Second, we compare our LEAR framework
with state-of-the-art attention methods. Third, we demon-
strate the effectiveness of the optimized CF map transforma-
tion, i.e., Eq. (20), in improving the quality of visual
explanation aswell as the performance of diagnostic models.

To verify the effectiveness of our proposed XGA module
and its produced guidance map, we compare the diagnostic
performance in accuracy (ACC) and multi-class area under
the receiver operating characteristic curve (mAUC). Note
that we use a five-fold cross-validation setting for all experi-
ments, and use the same indices for all the comparison
methods with no data leakage.

4.2.1 Reinforcement via Augmentation

As a baselinemethod for diagnosticmodel reinforcement, we
utilize the CFmapwithout XGA injection (i.e., Eq. (2)) to pro-
duce synthesized images to augment training samples and
use those to update the backbone diagnostic model. Specifi-
cally, using a CF map defined by Eq. (2), we transformed all
train data samples with target labels other than their ground-
truth label. For three-class experiments, we produced trans-
formed images with two other target labels. For example, if
the input image is an AD subject, we produced NC-trans-
formed and MCI-transformed images for that input image.
Finally, those transformed images were used to fine-tune the
backbone diagnosticmodels.We decided to use this augmen-
tationmethod as a baselinemethod for our work because it is
one of the simplest ways to utilize the CF map in reinforcing
the diagnostic performance. To this end, we report the com-
parison between the backbone, baseline, and our method in
Table 4. The improvement (+3.7%) in the classification

accuracy of ourmethod over that of the baselinemethod sug-
gests that our CF maps can indeed capture class-discrimina-
tive information and also indicates that these kinds of visual
explanations can guide and reinforce a diagnostic model,
which supports the motivation behind this study. In the fol-
lowing paragraphs, we will demonstrate that the LEAR
framework can further reinforce the diagnostic models with
guidance from visual explanation using CFmaps.

4.2.2 Comparison to Other Diagnostic Models

To demonstrate the ability of our LEAR framework in rein-
forcing diagnostic models, we have pre-trained and fixed the
weights of a three-class backbone ResNet18 diagnostic model
and re-implemented state-of-the-art diagnostic models. To
this end, we compare the performances of state-of-the-art
attention-guided [40], [42] models and conventional [10], [37],
[38], [48], [49] CNN models in Table 5. Refer to Supplemen-
tary S6, available online, for the diagnostic performance of
these conventional CNN models applied to our proposed
LEAR framework. In particular, they consistently derived
performance improvements, thus proving its generalizability.

Remarkably, our work demonstrates significant improve-
ment over the ResNet18 backbone model (ACC +15.74%) as
well as the state-of-the-art CNNmodels (mean ACC +13.64%).
In comparison to conventional CNNs, attention-guided diag-
nosticmodels (e.g., Li et al. [42] andLian et al. [40])mostly excel
in diagnostic performances.However, thesemodels are guided
by conventional visual attribution methods, such as CAM, that
can only provide coarse-grained guidance. Our LEAR frame-
work, synthesizing and exploiting fine-grained guidance, out-
performed all the competing methods by large margins in
mAUC and ACC. It is noteworthy that the performance
improvementswere obtained for all the diagnosticmodels con-
sidered in our experiments (i.e., ResNet18, VoxCNN, and
SonoNet16) in the experiments equally. Furthermore, as most
of the comparing works were proposed as binary diagnostic
models, we have performed a comprehensive binary diagnosis
comparison and presented in Supplementary S5.2, available
online.Our LEAR framework outperforms all comparingmod-
els in all binary class settings (mean ACC: CN versus MCI
+14.80%, sMCI versus pMCI +10.82%, MCI versus AD
+12.83%, CN versusAD+7.69%).

4.3 Iterative Explanation-Reinforcement Learning

Here, we demonstrate how the iterative learning scheme of
our LEAR framework can further improve the diagnostic
performances and, thereby, the quality of visual explanation.

TABLE 4
Comparison of Performance (ACC) Among the Backbone, Aug-
mentation, and the Attention With Guidance on ADNI Dataset

Setting ResNet18

backbone augmentation ours

CN vs.MCI vs. AD 0.5802 0.5883 0.6715
CN vs.MCI 0.6479 0.6856 0.7436
sMCI vs. pMCI 0.6946 0.7162 0.7703
MCI vs. AD 0.7965 0.8333 0.8716
CN vs. AD 0.8898 0.9231 0.9489

TABLE 3
Normalized Cross-Correlation (NCC) Scores in an Ablation Study of the Loss Terms in Eq. (9)

Components CN$MCI MCI$ AD CN$ AD

Lcls LDc;Gfadv
Lmap Ltv NCC(+) NCC(-) NCC(+) NCC(-) NCC(+) NCC(-)

✓ 0.048 0.055 0.045 0.063 0.066 0.081
✓ 0.219 0.199 0.196 0.203 0.231 0.228
✓ ✓ 0.328 0.256 0.254 0.247 0.331 0.289
✓ ✓ ✓ 0.269 0.237 0.217 0.208 0.278 0.241
✓ ✓ ✓ 0.360 0.281 0.289 0.291 0.348 0.292
✓ ✓ ✓ 0.358 0.279 0.285 0.287 0.353 0.305
✓ ✓ ✓ ✓ 0.364 0.289 0.299 0.297 0.366 0.312
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4.3.1 Effects in Generalization of a Diagnostic Model

We applied three iterations of our LEAR framework and
presented the results in Table 6. In comparison to the back-
bone model, the iterations of our LEAR framework have
increased the accuracy by +5.49%, +10.64%, and +10.50%,
respectively, for each iteration.

For a visual inspection of the changes in class-relevant fea-
ture representations, in Fig. 8, we present the CAM visualiza-
tion along with the CF map over three iterations of EU and
RU learning for anAD sample (Subject ID 005_S_0223), which
our backbone ResNet18 diagnosticmodelmisclassifiedwith a
low class probability. As shown in Fig. 8, the XGA module
excels in cases where the confidence of the predictive proba-
bility (i.e., values at the bottom of each image) of the backbone
diagnostic model is low. Specifically, the CAM obtained from
the backbone network vaguely highlights the ventricular
region (i.e., the center of an image), whereas the CAM results
after iterative learning focus on more meaningful and fine-
grained regions of the cortex and hippocampus. Likewise, the
first iteration CFmap neglected to highlight the hippocampus
region (orange box) associated with the AD progression, but
the second and third iteration CF maps clearly observed the
hypertrophy in the hippocampus region with an equivalent
intensity. Thus, the XGA module of our LEAR framework
improves the diagnostic model not only in terms of perfor-
mance but also in terms of innate interpretability of a diagnos-
tic model. Interestingly, we found that diagnostic scores
converge after second iteration, but the CAM results continue
to qualitatively improve even after the second iteration. The
more the iterations that were performed, the more fine-
grained and class-discriminative the CAM results became.

4.3.2 Effects in Visual Explanation

First, we selected a CN and AD image from a subject (Sub-
ject ID 131_S_0123) whose CF map was of unsatisfying

quality. Then, we produced the ground-truth map for CN
 AD transformation and CF maps for three iterations of
our LEAR framework (Fig. 9). Note that the first iteration
CF map does not benefit from reinforcement because the CF
map is defined by Eq. (2) at this iteration and is redefined
by Eq. (20) from the second iteration onwards.

In the first-iteration CF map, the attribution completely
ignores the hypertrophy in the hippocampus (orange box).
The attributions in the cortical (green box) and ventricular
(purple box) regions are also weak and noisy, making the
visual explanation pathologically unreliable. However, the
second-iteration CF map successfully captures the hyper-
trophy in the hippocampus and the attribution to the cor-
tex regions is clearer, but the attribution in the ventricles
has become nosier. Finally, the third-iteration CF map
clears up the noisy attribution in the ventricles. More
diverse results are presented in Supplementary S4, avail-
able online.

TABLE 6
Comparison of Performance (ACC) Among Various Iterations on

the ADNI Dataset

Setting ResNet18

Backbone 1st 2nd 3rd

CN vs.MCI vs. AD 0.5802 0.6347 0.6715 0.6715
CN vs.MCI 0.6479 0.7014 0.7436 0.7436
sMCI vs. pMCI 0.6946 0.7381 0.7703 0.7703
MCI vs. AD 0.7965 0.8396 0.8716 0.8716
CN vs. AD 0.8898 0.9229 0.9515 0.9489

Fig. 8. Counterfactual map and CAM visualization of XGA-injected
ResNet18 on the CN versus MCI versus AD scenario with self-iterative
training. The values at the bottom of brain images (Subject ID
005_S_0223) are the model’s softmax activated logits.

TABLE 5
Comparison of Performance on the Multi-Class (i.e., CN versusMCI versus AD) Classification Scenario on the ADNI Dataset

Guidance Models mAUC ACC

ResNet18 [48] 0.7501 � 0.046 0.5802 � 0.041
SonoNet16 [49] 0.7452 � 0.069 0.5912 � 0.056
VoxCNN [10] 0.7732 � 0.034 0.5863 � 0.045
Liu et al. [37] 0.7016 � 0.056 0.5468 � 0.069
Jin et al. [38] 0.7294 � 0.055 0.5901 � 0.041

Li et al. [42] 0.7559 � 0.038 0.6115 � 0.062
✓ Lian et al. [40] 0.7671 � 0.075 0.6257 � 0.059

Ours (ResNet18 + XGA) 0.8123 � 0.052 0.6715 � 0.051

Fig. 9. Reinforced counterfactual map visualization by using iterative
optimization on trained ResNet18 (Subject ID 131_S_0123, Image ID on
top left corner). The purple, orange, and green boxes correspond to the
ventricular, hippocampus, and cortex regions, respectively.
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5 CONCLUSION

With the unprecedented successes of deep learning in vari-
ous fields, there have been efforts of developing deep-learn-
ing methods in medical image analysis including brain
disease diagnosis. However, it is still limited for real-world
applications due to its unfavorable black-box property.

In this work, we proposed a novel learn-explain-reinforce
(LEAR) framework for producing high-quality visual explana-
tions about decision-making in 3D MRI-based AD diagnosis
through counterfactual map generation and for reinforcing a
diagnostic model. Specifically, we devised the counterfactual
map generator (CMG) to generate multi-way counterfactual
maps given a pre-trained diagnostic model, an explanation-
guided attention (XGA) module for feature representations
enhancement, and an iterative reinforcement learning scheme
to improve diagnostic performance. Our exhaustive experi-
ments over the ADNI dataset have empirically proved the
validity and generalizability of the proposed LEAR framework.

We believe that counterfactual reasoning helps explain a
model’s decision in an intuitive manner. However, when
generating a counterfactual map, it is imperative to reflect
other factors such as age, gender, and genes from a causal
inference perspective. In that regard, it would be the princi-
pal research direction to infer causal relations and to learn
representations accordingly. The causality-involved learn-
ing will make more robust decision-making and better
explanations about the decision.
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